Basic of Logarithms
normal

If  ${\log _{\tan {{30}^ \circ }}}\left( {\frac{{2{{\left| z \right|}^2} + 2\left| z \right| - 3}}{{\left| z \right| + 1}}} \right)\, < \, - 2$ then

A

$\left| z \right|\, < \,\frac{3}{2}$

B

$\left| z \right|\, > \,\frac{3}{2}$

C

$\left| z \right|\, > {2}$

D

$\left| z \right|\, < {2}$

Solution

$\log _{\frac{1}{\sqrt{3}}}\left(\frac{2|z|^{2}+2|z|-3}{|z|+1}\right)<-2$

$\Rightarrow \frac{2|z|^{2}+2|z|-3}{|z|+1}>\frac{2|z|^{2}+2|z|-3}{|z|+1}>\left(\frac{1}{\sqrt{3}}\right)^{-2}$

$\frac{2|z|^{2}+2|z|-3}{|z|+1}>3 $

$\Rightarrow 2|z|^{2}-|z|-6>0$

$\Rightarrow|z|>2$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.