If  ${\log _{\tan {{30}^ \circ }}}\left( {\frac{{2{{\left| z \right|}^2} + 2\left| z \right| - 3}}{{\left| z \right| + 1}}} \right)\, < \, - 2$ then

  • A

    $\left| z \right|\, < \,\frac{3}{2}$

  • B

    $\left| z \right|\, > \,\frac{3}{2}$

  • C

    $\left| z \right|\, > {2}$

  • D

    $\left| z \right|\, < {2}$

Similar Questions

If $x = {\log _a}(bc),y = {\log _b}(ca),z = {\log _c}(ab),$then which of the following is equal to $1$

Let $a, b, x$ be positive real numbers with $a \neq 1$, $x \neq 1$, ab $\neq 1$. Suppose $\log _{ a } b =10$, and $\frac{\log _{ a } x \log _{ x }\left(\frac{ b }{ a }\right)}{\log _{ x } b \log _{ ab } x }=\frac{ p }{ q }$, where $p$ and $q$ are positive integers which are coprime. Then $p+q$ is

  • [KVPY 2021]

If $x, y, z \in R^+$ are such that $z > y > x > 1$ , ${\log _y}x + {\log _x}y = \frac{5}{2}$ and ${\log _z}y + {\log _y}z = \frac{{10}}{3}$ then ${\log _x}z$ is equal to

The set of real values of $x$ satisfying ${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ is

If ${\log _{0.04}}(x - 1) \ge {\log _{0.2}}(x - 1)$ then $x$ belongs to the interval