If ${\log _{\tan {{30}^ \circ }}}\left( {\frac{{2{{\left| z \right|}^2} + 2\left| z \right| - 3}}{{\left| z \right| + 1}}} \right)\, < \, - 2$ then
$\left| z \right|\, < \,\frac{3}{2}$
$\left| z \right|\, > \,\frac{3}{2}$
$\left| z \right|\, > {2}$
$\left| z \right|\, < {2}$
$\log ab - \log |b| = $
If $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2,$ then $A$ is equal to
The number ${\log _2}7$ is
If ${a^x} = b,{b^y} = c,{c^z} = a,$ then value of $xyz$ is
For $y = {\log _a}x$ to be defined $'a'$ must be